Log In

2724 Sawbury Blvd
Columbus, OH 43235-4579 USA
Tel +1 614 799 0664
Fax +1 614 799 2116

Quasi-phase-matched Electro-Optic Modulators for High-Speed Signal Processing

Quasi-phase-matched Electro-Optic Modulators for High-Speed Signal Processing

This paper reports on the design, fabrication and testing of quasi-phase-matched (QPM) lithium niobate electro-optic modulators optimized for the 40-60 GHz frequency range. The device used a single-drive, coplanar-waveguide (cpw)electrode structure that provided a good balance between impedance and RF loss, and a DC Vπ.L product of approximately 10 V.cm. Ferroelectric domain engineering enabled push-pull operation with a single drive, while achieving low chirp. A custom developed pulsed poling process was used to fabricate periodic domain QPM structures in lithium niobate. QPM periods were in the range of 3 mm to 4.5 mm, depending on the design frequency. The pulse method enabled precise domain definition with a minimum of overpoling. Low-loss diffused optical waveguides were fabricated by an annealed proton exchange (APE) process. By operating in both co-propagating and counter-propagating modes, the QPM devices can be used to implement dual band RF bandpass filters simultaneously covering both 10-20 GHz and 40-60 GHz frequency bands. Arrays of QPM device structures demonstrated in this work form the basis for a reconfigurable RF photonic filter. The RF photonic QPM technology enables efficient concurrent antenna remoting and filtering functionality.

Presented at SPIE OPTO Photonics West 2013

James E. Toney
Vincent E. Stenger
James Busch
Peter Pontius
Michael Clabough
Andrea Pollick
Sri Sriram

About Us | Products | Services | Technology | News / Events | Library | Opportunities | Contact Us | Awards